When plotting a PLS-DA object with plotLoadings
, the genes are colored according to the outcome of interest. This is a very interesting information, but when I extract the values with selectVar
, I canβt find a way of also getting the group of interest.
Is there a way of getting this information?
Using the below code as an example:
suppressMessages(library(mixOmics))
data(srbct)
X <- srbct$gene
Y <- srbct$class
model <- plsda(X, Y)
l <- plotLoadings(model, contrib = "max")

head(l)
#> EWS BL NB RMS Contrib.EWS Contrib.BL
#> g937 -0.5603682 1.347079 0.8186230 -0.3855818 FALSE TRUE
#> g1894 -0.5572560 1.112754 0.9372550 -0.3666102 FALSE TRUE
#> g74 -0.4260267 1.841357 0.3642796 -0.4651797 FALSE TRUE
#> g1932 -0.3446706 1.467506 0.6792611 -0.5981877 FALSE TRUE
#> g1884 -0.3383005 2.007751 0.2094040 -0.5396972 FALSE TRUE
#> g571 -0.4856335 1.016801 0.9521337 -0.4195219 FALSE TRUE
#> Contrib.NB Contrib.RMS Contrib GroupContrib color importance
#> g937 FALSE FALSE FALSE BL #F68B33 0.05769917
#> g1894 FALSE FALSE FALSE BL #F68B33 0.05561153
#> g74 FALSE FALSE FALSE BL #F68B33 0.05506304
#> g1932 FALSE FALSE FALSE BL #F68B33 0.05406453
#> g1884 FALSE FALSE FALSE BL #F68B33 0.05360364
#> g571 FALSE FALSE FALSE BL #F68B33 0.05301618
Created on 2022-08-01 by the reprex package (v2.0.1)
Session info
sessioninfo::session_info()
#> β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> setting value
#> version R version 4.2.1 (2022-06-23 ucrt)
#> os Windows 10 x64 (build 19044)
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate English_United States.utf8
#> ctype English_United States.utf8
#> tz Australia/Sydney
#> date 2022-08-01
#> pandoc 2.18 @ C:/Users/Work/AppData/Local/Pandoc/ (via rmarkdown)
#>
#> β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> package * version date (UTC) lib source
#> BiocParallel 1.30.3 2022-06-07 [1] Bioconductor
#> cli 3.3.0 2022-04-25 [1] CRAN (R 4.2.1)
#> codetools 0.2-18 2020-11-04 [1] CRAN (R 4.2.1)
#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.1)
#> corpcor 1.6.10 2021-09-16 [1] CRAN (R 4.2.0)
#> curl 4.3.2 2021-06-23 [1] CRAN (R 4.2.1)
#> digest 0.6.29 2021-12-01 [1] CRAN (R 4.2.1)
#> dplyr 1.0.9 2022-04-28 [1] CRAN (R 4.2.1)
#> ellipse 0.4.3 2022-05-31 [1] CRAN (R 4.2.1)
#> evaluate 0.15 2022-02-18 [1] CRAN (R 4.2.1)
#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.1)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.1)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.1)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.1)
#> ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.2.1)
#> ggrepel 0.9.1 2021-01-15 [1] CRAN (R 4.2.1)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.1)
#> gridExtra 2.3 2017-09-09 [1] CRAN (R 4.2.1)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 4.2.1)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.2.1)
#> htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.1)
#> httr 1.4.3 2022-05-04 [1] CRAN (R 4.2.1)
#> igraph 1.3.4 2022-07-19 [1] CRAN (R 4.2.1)
#> knitr 1.39 2022-04-26 [1] CRAN (R 4.2.1)
#> lattice * 0.20-45 2021-09-22 [1] CRAN (R 4.2.1)
#> lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.1)
#> MASS * 7.3-57 2022-04-22 [1] CRAN (R 4.2.1)
#> Matrix 1.4-1 2022-03-23 [1] CRAN (R 4.2.1)
#> matrixStats 0.62.0 2022-04-19 [1] CRAN (R 4.2.1)
#> mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
#> mixOmics * 6.20.0 2022-04-26 [1] Bioconductor (R 4.2.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.1)
#> pillar 1.8.0 2022-07-18 [1] CRAN (R 4.2.1)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.1)
#> plyr 1.8.7 2022-03-24 [1] CRAN (R 4.2.1)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.2.1)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.1)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.0 2022-06-28 [1] CRAN (R 4.2.1)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.1)
#> rARPACK 0.11-0 2016-03-10 [1] CRAN (R 4.2.1)
#> RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)
#> Rcpp 1.0.9 2022-07-08 [1] CRAN (R 4.2.1)
#> reprex 2.0.1 2021-08-05 [1] CRAN (R 4.2.1)
#> reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.2.1)
#> rlang 1.0.4 2022-07-12 [1] CRAN (R 4.2.1)
#> rmarkdown 2.14 2022-04-25 [1] CRAN (R 4.2.1)
#> RSpectra 0.16-1 2022-04-24 [1] CRAN (R 4.2.1)
#> scales 1.2.0 2022-04-13 [1] CRAN (R 4.2.1)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.1)
#> stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.1)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.2.1)
#> styler 1.7.0 2022-03-13 [1] CRAN (R 4.2.1)
#> tibble 3.1.8 2022-07-22 [1] CRAN (R 4.2.1)
#> tidyr 1.2.0 2022-02-01 [1] CRAN (R 4.2.1)
#> tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.2.1)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.1)
#> vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.2.1)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.1)
#> xfun 0.31 2022-05-10 [1] CRAN (R 4.2.1)
#> xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.1)
#> yaml 2.3.5 2022-02-21 [1] CRAN (R 4.2.0)
#>
#> [1] D:/Programs/Work Programs/R-4.2.1/library
#>
#> ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Therefore, rather than using selectVar()
just take the output of plotLoadings()
directly! You can find what youβre after in the GroupContrib
column of the output.
Hope this helped
1 Like
Thatβs was It, thank you very much!!
1 Like